Recruitment of Oct4 Protein to UV-Damaged Chromatin in Embryonic Stem Cells

نویسندگان

  • Eva Bártová
  • Gabriela Šustáčková
  • Lenka Stixová
  • Stanislav Kozubek
  • Soňa Legartová
  • Veronika Foltánková
چکیده

BACKGROUND Oct4 is a specific marker of embryonic stem cell (ESC) pluripotency. However, little is known regarding how Oct4 responds to DNA damage. Here, we investigated whether Oct4 recognizes damaged chromatin in mouse ESCs stably expressing GFP-Oct4. These experiments should contribute to the knowledge of how ESC genomic integrity is maintained, which is crucial for potential application of human ESCs in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS We used time-lapse confocal microscopy, microirradiation by UV laser (355 nm), induction of DNA lesions by specific agents, and GFP technology to study the Oct4 response to DNA damage. We found that Oct4 accumulates in UV-damaged regions immediately after irradiation in an adenosine triphosphate-dependent manner. Intriguingly, this event was not accompanied by pronounced Nanog and c-MYC recruitment to the UV-damaged sites. The accumulation of Oct4 to UV-damaged chromatin occurred simultaneously with H3K9 deacetylation and H2AX phosphorylation (γH2AX). Moreover, we observed an ESC-specific nuclear distribution of γH2AX after interference to cellular processes, including histone acetylation, transcription, and cell metabolism. Inhibition of histone deacetylases mostly prevented pronounced Oct4 accumulation at UV-irradiated chromatin. CONCLUSIONS/SIGNIFICANCE Our studies demonstrate pluripotency-specific events that accompany DNA damage responses. Here, we discuss how ESCs might respond to DNA damage caused by genotoxic injury that might lead to unwanted genomic instability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells

Pioneer transcription factors recognise and bind their target sequences in inaccessible chromatin to establish new transcriptional networks throughout development and cellular reprogramming. During this process, pioneer factors establish an accessible chromatin state to facilitate additional transcription factor binding, yet it remains unclear how different pioneer factors achieve this. Here, w...

متن کامل

Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency

Embryonic stem cells (ESCs) are unique in that they have the capacity to differentiate into all of the cell types in the body. We know a lot about the complex transcriptional control circuits that maintain the naive pluripotent state under self-renewing conditions but comparatively less about how cells exit from this state in response to differentiation stimuli. Here, we examined the role of Ot...

متن کامل

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells

BAF chromatin remodeling complexes containing the BRG1 protein have been shown to be not only essential for early embryonic development, but also paramount in enhancing the efficiency of reprogramming somatic cells to pluripotency mediated by four transcription factors. To investigate the role of BRG1 in regulating pluripotency, we found that Oct4 and Nanog levels were increased immediately aft...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011